Sensor Fusion-Based Localization Framework for Autonomous Vehicles in Rural Forested Environments

Jose Matute, Mario Rodriguez-Arozamena, Joshue Perez, Ali Karimoddini*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

One major hurdle for the deployment of autonomous vehicles in rural environments is achieving accurate localization in areas with tree-canopied roads or outdated point cloud maps. The presence of limited visibility and high variability renders standalone sensor localization unreliable in such situations. To tackle these issues, this paper presents a sensor fusion-based localization framework that integrates data from GNSS, LiDAR, INS, and vehicle odometry. The proposed approach uses a loosely-coupled Extended Kalman Filter for sensor fusion and a weighted gate approach for accurate state estimations. Compared to a state-of-the-art technique, the proposed method achieves a reduction of around 71% in maximum lateral deviations. This method successfully enables a safe and reliable localization in challenging scenarios that are frequently found in the rural and inter-urban sectors.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1007-1013
Número de páginas7
ISBN (versión digital)9798350399462
DOI
EstadoPublicada - 2023
Evento26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Espana
Duración: 24 sept 202328 sept 2023

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (versión impresa)2153-0009
ISSN (versión digital)2153-0017

Conferencia

Conferencia26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
País/TerritorioEspana
CiudadBilbao
Período24/09/2328/09/23

Huella

Profundice en los temas de investigación de 'Sensor Fusion-Based Localization Framework for Autonomous Vehicles in Rural Forested Environments'. En conjunto forman una huella única.

Citar esto