Silver and copper screen-printed temperature sensors on flexible substrates: The impact of ink sintering conditions and composition

Celina Vaquero*, Leire Bilbao, Ana Pérez, Haizea Villaverde, Jon Maudes, Olatz Adarraga, Izaskun Bustero, Miren Hayet, Julen Caballero, Ibai Santamaria

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Fully screen-printed silver and copper temperature sensors were studied up to 100°C. The influence of the processing conditions and the composition of three silver and one copper commercial inks is analyzed in this study. The curing temperature is extremely relevant to stabilize the initial resistance of silver sensors, especially for those printed with the lowest solid content ink. All printed sensors showed good linear behavior in the range of 25–100°C (R2 > 0.999) except for those fabricated with the lowest solid content silver ink, which also displayed the highest hysteresis and drift. The temperature coefficient of resistance (TCR) obtained for the copper sensors was 3.367 × 10−3 K−1 and for the three silver sensors, it ranged between 2.723 × 10−3 to 2.963 × 10−3 K−1. This TCR is higher than values reported for inkjet-printed resistive temperature detectors. Overall, this work demonstrates that low-cost, linear, screen-printed temperature sensors can be successfully fabricated on flexible substrates.

Idioma originalInglés
PublicaciónApplied Research
DOI
EstadoAceptada/en prensa - 2024

Huella

Profundice en los temas de investigación de 'Silver and copper screen-printed temperature sensors on flexible substrates: The impact of ink sintering conditions and composition'. En conjunto forman una huella única.

Citar esto