Solving a Multi-objective Job Shop Scheduling Problem with an Automatically Configured Evolutionary Algorithm

Jesús Para, Javier Del Ser, Antonio J. Nebro*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this work we focus on optimizing a multi-objective formulation of the Job Shop Scheduling Problem (JSP) which considers the minimization of energy consumption as one of the objectives. In practice, users experts in the problem domain but with a low knowledge in metaheuristics usually take an existing algorithm with default settings to optimize problem instances but, in this context, the use of automatic parameter configuration techniques can help to find ad-hoc configurations of algorithms that effectively solve optimization problems. Our aim is to study what improvement in results can be obtained by applying an autoconfiguration approach versus using a set of well-known multi-objective evolutionary algorithms (NSGA-II, SPEA2, SMS-EMOA and MOEA/D) for different instances of the JSP, with varying dimensionality. Our experiments showcase the potential of automated algorithmic configuration for energy-efficient production scheduling, producing better balanced solutions than the multi-objective solvers considered in the study.

Idioma originalInglés
Título de la publicación alojadaOptimization and Learning - 6th International Conference, OLA 2023, Proceedings
EditoresBernabé Dorronsoro, Francisco Chicano, Gregoire Danoy, El-Ghazali Talbi
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas48-61
Número de páginas14
ISBN (versión impresa)9783031340192
DOI
EstadoPublicada - 2023
Evento6th International Conference on Optimization and Learning, OLA 2023 - Malaga, Espana
Duración: 3 may 20235 may 2023

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1824 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia6th International Conference on Optimization and Learning, OLA 2023
País/TerritorioEspana
CiudadMalaga
Período3/05/235/05/23

Financiación

FinanciadoresNúmero del financiador
Federación Española de Enfermedades Raras
Eusko JaurlaritzaIT1456-22
Ministerio de Ciencia e InnovaciónPID2020-112540RB-C41
Agencia Estatal de Investigación

    Huella

    Profundice en los temas de investigación de 'Solving a Multi-objective Job Shop Scheduling Problem with an Automatically Configured Evolutionary Algorithm'. En conjunto forman una huella única.

    Citar esto