Spatial Estimation of Ground-Level Temperature for Climate-Sensitive Urban Mobility using Image-to-Image Deep Neural Networks

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Global warming is reflected by the increase in air temperature at ground level, among other factors. This increase in temperatures is more pressing in urban environments, due to the phenomenon known as Urban Heat Island (UHI). This phenomenon consists of temperatures in urban environments being higher than those in rural areas, which can be due, among other factors, to urban morphology and activities (traffic, air conditioning). UHI poses a risk to people and affects habits of urban life, such as mobility. This is why estimating air tem-peratures at 2 meters above ground level with a street spatial resolution can help urban planners make better decisions to achieve less thermally stressed urban areas. This paper presents the results of a preliminary study aimed to explore the use of image-to-image deep neural networks to estimate the pedestrian level air temperature in urban areas. Specifically, we propose a U-Net architecture fed with meteorological variables to produce, at its output, a estimation of the spatial distribution of the target variable. Results over data belonging to 4 major European cities show that with a suitable methodology implementation and databases, Deep Learning can be very convenient and efficient when estimating the pedestrian level air temperature, highlighting its potential for climate change adaptation of urban mobility.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas6206-6212
Número de páginas7
ISBN (versión digital)9798350399462
DOI
EstadoPublicada - 2023
Evento26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Espana
Duración: 24 sept 202328 sept 2023

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (versión impresa)2153-0009
ISSN (versión digital)2153-0017

Conferencia

Conferencia26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
País/TerritorioEspana
CiudadBilbao
Período24/09/2328/09/23

Huella

Profundice en los temas de investigación de 'Spatial Estimation of Ground-Level Temperature for Climate-Sensitive Urban Mobility using Image-to-Image Deep Neural Networks'. En conjunto forman una huella única.

Citar esto