Springback prediction using point series and deep learning

Yang Bingqian, Yuanyi Zeng, Hai Yang, Mariluz Penalva Oscoz, Mikel Ortiz, Frans Coenen, Anh Nguyen*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)

Resumen

One of the main challenges that prevent wide adoption of Single Point Incremental Forming (SPIF) is the geometric accuracy of the process resulting primarily from the effect of springback. There are various expedients that can be adopted to address this, but one of the most common is tool path correction. The challenge is then how best to predict springback so as to implement tool path correction. It is established that springback, to a large extent, is related to the geometry of the part to be manufactured. The proposed mechanism uses a novel point series representation to capture local geometries that then form a global bank of geometries for general use. Each point series can then be associated with a predicted springback value generated using deep or machine learning. Experiments are reported using a Long Short Term Memory (LSTM) model coupled with a Multilayer Perception Network (MLP), and a Support Vector Machine (SVM) regression model. A best R2, “Coefficient of Determination”, of 0.9181 was obtained indicating that the proposed approach provided a realistic solution to the current limitations of SPIF.

Idioma originalInglés
Páginas (desde-hasta)4723-4735
Número de páginas13
PublicaciónInternational Journal of Advanced Manufacturing Technology
Volumen132
N.º9-10
DOI
EstadoPublicada - jun 2024

Huella

Profundice en los temas de investigación de 'Springback prediction using point series and deep learning'. En conjunto forman una huella única.

Citar esto