Task Classification Using Topological Graph Features for Functional M/EEG Brain Connectomics

Javier Del Ser*, Eneko Osaba, Miren Nekane Bilbao

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In the last few years the research community has striven to achieve a thorough understanding of the brain activity when the subject under analysis undertakes both mechanical tasks and purely mental exercises. One of the most avant-garde approaches in this regard is the discovery of connectivity patterns among different parts of the human brain unveiled by very diverse sources of information (e.g. magneto- or electro-encephalography – M/EEG, functional and structural Magnetic Resonance Imaging – fMRI and sMRI, or positron emission tomography – PET), coining the so-called brain connectomics discipline. Surprisingly, even though contributions related to the brain connectome abound in the literature, far too little attention has been paid to the exploitation of such complex spatial-temporal patterns to classify the task performed by the subject while brain signals are being registered. This manuscript covers this research niche by elaborating on the extraction of topological features from the graph modeling the brain connectivity under different tasks. By resorting to public information from the Human Connectome Project, the work will show that a selected subset of topological predictors from M/EEG connectomes suffices for accurately predicting (with average accuracy scores of up to 95%) the task performed by the subject at hand, further insights given on their predictive power when the M/EEG connectivity is inferred over different frequency bands.

Idioma originalInglés
Título de la publicación alojadaApplications of Evolutionary Computation - 21st International Conference, EvoApplications 2018, Proceedings
EditoresKevin Sim, Paul Kaufmann
EditorialSpringer Verlag
Páginas21-32
Número de páginas12
ISBN (versión impresa)9783319775371
DOI
EstadoPublicada - 2018
Evento21st International Conference on Applications of Evolutionary Computation, EvoApplications 2018 - parma, Italia
Duración: 4 abr 20186 abr 2018

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10784 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia21st International Conference on Applications of Evolutionary Computation, EvoApplications 2018
País/TerritorioItalia
Ciudadparma
Período4/04/186/04/18

Huella

Profundice en los temas de investigación de 'Task Classification Using Topological Graph Features for Functional M/EEG Brain Connectomics'. En conjunto forman una huella única.

Citar esto