Time series forecasting in turning processes using ARIMA model

Alberto Jimenez-Cortadi*, Fernando Boto, Itziar Irigoien, Basilio Sierra, German Rodriguez

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

4 Citas (Scopus)

Resumen

A prediction model which is able to predict the tool life and the cutting edge replacement is tackled. The study is based on the spindle load during a turning process in order to optimize productivity and the cost of the turning processes. The methodology proposed to address the problem encompasses several steps. The main ones include filtering the signal, modeling of the normal behavior and forecasting. The forecasting approach is carried out by an Autoregressive Integrated Moving Average (ARIMA) model. Results are compared with a robust ARIMA model and show that the previous preprocessing steps are necessary to obtain greater accuracy in predicting future values of this specific process.

Idioma originalInglés
Título de la publicación alojadaStudies in Computational Intelligence
EditorialSpringer Verlag
Páginas157-166
Número de páginas10
DOI
EstadoPublicada - 2018

Serie de la publicación

NombreStudies in Computational Intelligence
Volumen798
ISSN (versión impresa)1860-949X

Huella

Profundice en los temas de investigación de 'Time series forecasting in turning processes using ARIMA model'. En conjunto forman una huella única.

Citar esto