Towards Risk Estimation in Automated Vehicles Using Fuzzy Logic

Leonardo González, Enrique Martí, Isidro Calvo, Alejandra Ruiz, Joshue Pérez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

8 Citas (Scopus)
1 Descargas (Pure)

Resumen

As vehicles get increasingly automated, they need to properly evaluate different situations and assess threats at run-time. In this scenario automated vehicles should be able to evaluate risks regarding a dynamic environment in order to take proper decisions and modulate their driving behavior accordingly. In order to avoid collisions, in this work we propose a risk estimator based on fuzzy logic which accounts for risk indicators regarding (1) the state of the driver, (2) the behavior of other vehicles and (3) the weather conditions. A scenario with two vehicles in a car-following situation was analyzed, where the main concern is to avoid rear-end collisions. The goal of the presented approach is to effectively estimate critical states and properly assess risk, based on the indicators chosen.
Idioma originalInglés
Título de la publicación alojadaunknown
EditoresFriedemann Bitsch, Amund Skavhaug, Barbara Gallina, Erwin Schoitsch
EditorialSpringer Verlag
Páginas278-289
Número de páginas12
Volumen11094
ISBN (versión digital)978-3-319-99229-7
ISBN (versión impresa)978-331999228-0, 9783319992280
DOI
EstadoPublicada - 2018
EventoWorkshops: ASSURE, DECSoS, SASSUR, STRIVE, and WAISE 2018 co-located with 37th International Conference on Computer Safety, Reliability and Security, SAFECOMP 2018 - Västerås, Suecia
Duración: 18 sept 201821 sept 2018

Serie de la publicación

Nombre0302-9743

Conferencia

ConferenciaWorkshops: ASSURE, DECSoS, SASSUR, STRIVE, and WAISE 2018 co-located with 37th International Conference on Computer Safety, Reliability and Security, SAFECOMP 2018
País/TerritorioSuecia
CiudadVästerås
Período18/09/1821/09/18

Palabras clave

  • Automated vehicles
  • Collision avoidance
  • Fuzzy logic
  • Time-to-collision
  • Driving behavior

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASS
  • Funding Info
  • This work was supported by the AMASS project (H2020-_x000D_ ECSEL) with grant agreement number 692474.

Huella

Profundice en los temas de investigación de 'Towards Risk Estimation in Automated Vehicles Using Fuzzy Logic'. En conjunto forman una huella única.

Citar esto