Trajectory Planning of Automated Vehicles Using Real-Time Map Updates

Mátyás Szántó*, Carlos Hidalgo, Leonardo González, Joshué Pérez Rastelli, Estibaliz Asua, László Vajta

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

The development of connected and automated vehicles (CAVs) presents a great opportunity to extend the current range of vehicle vision, by gathering information outside of its sensors. Two main sources could be aggregated for this extended perception; vehicles making use of vehicle-to-vehicle communication (V2V), and infrastructure using vehicle-to-infrastructure communication (V2I). In this paper, we focus on the infrastructure side and make the case for low-latency obstacle mapping using V2I communication. A map management framework is proposed, which allows vehicles to broadcast and subscribe to traffic information-related messages using the Message Queuing Telemetry Transport (MQTT) protocol. This framework makes use of our novel candidate/employed map (C/EM) model for the real-time updating of obstacles broadcast by individual vehicles. This solution has been implemented and tested using a scenario that contains real and simulated CAVs tasked with doing lane change and braking maneuvers. As a result, the simulated vehicle can optimize its trajectory planning based on information which could not be observed by its sensor suite but is instead received from the presented map-management module, while remaining capable of performing the maneuvers in an automated manner.

Idioma originalInglés
Páginas (desde-hasta)67468-67481
Número de páginas14
PublicaciónIEEE Access
Volumen11
DOI
EstadoPublicada - 2023

Financiación

FinanciadoresNúmero del financiador
European Commission Horizon 2020
Research and Innovation Action952684
Horizon 2020 Framework Programme

    Huella

    Profundice en los temas de investigación de 'Trajectory Planning of Automated Vehicles Using Real-Time Map Updates'. En conjunto forman una huella única.

    Citar esto