Unsupervised Machine Learning for Blind Rivets Quality Inspection

Ander Martin Rebe*, Mariluz Penalva, Fernando Veiga, Alain Gil Del Val, Bilal El Moussaoui Abousoliman

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Fastening plays a crucial role in aircraft manufacturing, and the demand for automated solutions has grown. Blind rivets are appealing for automation but require indirect assessment of the formed head for quality monitoring. Unsupervised machine learning holds potential for blind rivet inspection and extends to industrial data clustering/classification. In this context, labeling industrial data is challenging due to production focus and the need for NO OK labels. Unsupervised machine learning and advanced data analysis methods offer opportunities to optimize quality control processes without manual labeling or costly experiments. This paper proposes two approaches to address the issue by clustering time-dependent signals in the riveting process. After preprocessing the signals, different clustering techniques are applied to time-series and signal features to obtain OK and NO OK installation clusters. The first approach, using Euclidean distance and Dynamic Time Warping, yields poor clustering results. The second approach involves feature extraction using time domain and expert descriptors, along with dimensional reduction techniques (PCA, UMAP), followed by clustering techniques. UMAP combined with DBSCAN clustering achieves interesting results, with high precision and accuracy values (above 0.8) for both OK and NO OK clusters.

Idioma originalInglés
Título de la publicación alojadaAdvances in Artificial Intelligence in Manufacturing - Proceedings of the 1st European Symposium on Artificial Intelligence in Manufacturing, 2023
EditoresAchim Wagner, Kosmas Alexopoulos, Sotiris Makris
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas73-80
Número de páginas8
ISBN (versión impresa)9783031574955
DOI
EstadoPublicada - 2024
Evento1st European Symposium on Artificial Intelligence in Manufacturing, ESAIM 2023 - Kaiserslautern, Alemania
Duración: 19 sept 202319 sept 2023

Serie de la publicación

NombreLecture Notes in Mechanical Engineering
ISSN (versión impresa)2195-4356
ISSN (versión digital)2195-4364

Conferencia

Conferencia1st European Symposium on Artificial Intelligence in Manufacturing, ESAIM 2023
País/TerritorioAlemania
CiudadKaiserslautern
Período19/09/2319/09/23

Huella

Profundice en los temas de investigación de 'Unsupervised Machine Learning for Blind Rivets Quality Inspection'. En conjunto forman una huella única.

Citar esto