Unsupervised methods for anomalies detection through intelligent monitoring systems

Alberto Carrascal*, Alberto Díez, Ander Azpeitia

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

The success of intelligent diagnosis systems normally depends on the knowledge about the failures present on monitored systems. This knowledge can be modelled in several ways, such as by means of rules or probabilistic models. These models are validated by checking the system output fit to the input in a supervised way. However, when there is no such knowledge or when it is hard to obtain a model of it, it is alternatively possible to use an unsupervised method to detect anomalies and failures. Different unsupervised methods (HCL, K-Means, SOM) have been used in present work to identify abnormal behaviours on the system being monitored. This approach has been tested into a real-world monitored system related to the railway domain, and the results show how it is possible to successfully identify new abnormal system behaviours beyond those previously modelled well-known problems.

Idioma originalInglés
Título de la publicación alojadaHybrid Artificial Intelligence Systems - 4th International Conference, HAIS 2009, Proceedings
Páginas137-144
Número de páginas8
DOI
EstadoPublicada - 2009
Evento4th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2009 - Salamanca, Espana
Duración: 10 jun 200912 jun 2009

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen5572 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia4th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2009
País/TerritorioEspana
CiudadSalamanca
Período10/06/0912/06/09

Huella

Profundice en los temas de investigación de 'Unsupervised methods for anomalies detection through intelligent monitoring systems'. En conjunto forman una huella única.

Citar esto